def do_kfold(proc_images, proc_labels, split=10):
trainimages = []
trainlabels = []
testimages = []
testlabels = []
rand_idx = random.sample(range(0, len(proc_images)), len(proc_images))
proc_images = proc_images[rand_idx]
proc_labels = proc_labels[rand_idx]
kf = KFold(n_splits=split)
for train_index, test_index in kf.split(proc_images):
x_train, x_test = proc_images[train_index], proc_images[test_index]
y_train, y_test = proc_labels[train_index], proc_labels[test_index]
trainimages.append(x_train)
testimages.append(x_test)
trainlabels.append(y_train)
testlabels.append(y_test)
np.save("trainimages.npy", trainimages)
np.save("testimages.npy", testimages)
np.save("trainlabels.npy", trainlabels)
np.save("testlabels.npy", testlabels)
return(trainimages, testimages, trainlabels, testlabels)
cnn_expression_normal.py 文件源码
python
阅读 26
收藏 0
点赞 0
评论 0
评论列表
文章目录