train.py 文件源码

python
阅读 21 收藏 0 点赞 0 评论 0

项目:tensorflow_kaggle_house_price 作者: Cuongvn08 项目源码 文件源码
def fit(self, X, y):
        self.base_models_ = [list() for x in self.base_models]
        self.meta_model_ = clone(self.meta_model)
        kfold = KFold(n_splits=self.n_folds, shuffle=True, random_state=15)

        # train cloned base models then create out-of-fold predictions that are needed to train the cloned meta-model
        out_of_fold_predictions = np.zeros((X.shape[0], len(self.base_models)))
        for i, model in enumerate(self.base_models):
            for train_index, holdout_index in kfold.split(X, y):
                instance = clone(model)
                self.base_models_[i].append(instance)
                instance.fit(X[train_index], y[train_index])
                y_pred = instance.predict(X[holdout_index])
                out_of_fold_predictions[holdout_index, i] = y_pred

        # now train the cloned  meta-model using the out-of-fold predictions as new feature
        self.meta_model_.fit(out_of_fold_predictions, y)
        return self

    # do the predictions of all base models on the test data and use the averaged predictions as 
    #meta-features for the final prediction which is done by the meta-model
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号