def run_cross_validation_create_models_unet1(nfolds=5):
from sklearn.model_selection import KFold
files_full = glob.glob(INPUT_PATH + "*/*.png")
files = []
for f in files_full:
if '_mask' in f:
continue
files.append(f)
kf = KFold(n_splits=nfolds, shuffle=True, random_state=66)
num_fold = 0
sum_score = 0
for train_index, test_index in kf.split(range(len(files))):
num_fold += 1
print('Start KFold number {} from {}'.format(num_fold, nfolds))
print('Split train: ', len(train_index))
print('Split valid: ', len(test_index))
score = train_single_model(num_fold, train_index, test_index, files)
sum_score += score
print('Avg loss: {}'.format(sum_score/nfolds))
a25_unet_training_v1_on_my_segmentation.py 文件源码
python
阅读 19
收藏 0
点赞 0
评论 0
评论列表
文章目录