def best_window(self, X_train, y_train, w_min, w_max, t_min,t_max,f_min,f_max):
w_opt = 0
t_opt = 0
f_opt = 0
accur_opt = 0.
x_w = []
y_accu= []
# range of window : w_min --> w_max
for w in range(w_min,w_max+1):
#X,y = preprocess_data(w)
#X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
t, f, accur = self.best_forrest(X_train,y_train,10,t_min,t_max,f_min,f_max)
print('Window = '+str(w)+' days --> Best Forrest : number of trees : ' + str(t) + ', maximum of features : ' + str(f) + ', with accuracy :' + str(accur))
if (accur > accur_opt) : w_opt, t_opt, f_opt, accur_opt = w, t, f, accur
x_w.append(w), y_accu.append(accur)
print('Best window : w = '+str(w_opt)+'. Best Forrest : number of trees : ' + str(t_opt) + ', maximum of features : ' + str(f_opt) + ', with accuracy :' + str(accur_opt))
return w_opt, t_opt, f_opt
Stock_Prediction_Model_Random_Forrest.py 文件源码
python
阅读 32
收藏 0
点赞 0
评论 0
评论列表
文章目录