def fit(self, X, y):
if self.use_mspe:
lgb_train = lgb.Dataset(X, y,
weight=np.ones(X.shape[0]),
free_raw_data=False)
lgb_test = lgb.Dataset(X, y, reference=lgb_train,
weight=np.ones(X.shape[0]),
free_raw_data=False)
self.gbm = lgb.train(
self.kwargs,
lgb_train,
num_boost_round=10,
fobj=mspe,
feval=evalerror_lgbm,
valid_sets=lgb_test)
else:
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3)
#lgb_test = lgb.Dataset(X, y, reference=lgb_train,
# weight=np.ones(X.shape[0]),
# free_raw_data=False)
self.gbm.fit(X, y, early_stopping_rounds=10, eval_set=[(X, y)], verbose=False)
#print "gbm best_iteration=", self.gbm.best_iteration
评论列表
文章目录