def get_dataset(dataset_path='Data/Train_Data'):
# Getting all data from data path:
try:
X = np.load('Data/npy_train_data/X.npy')
Y = np.load('Data/npy_train_data/Y.npy')
except:
labels = listdir(dataset_path) # Geting labels
X = []
Y = []
for label in labels:
datas_path = dataset_path+'/'+label
for data in listdir(datas_path):
img = get_img(datas_path+'/'+data)
X.append(img)
Y.append(int(label))
# Create dateset:
X = np.array(X).astype('float32')/255.
Y = np.array(Y).astype('float32')
Y = to_categorical(Y, 2)
if not os.path.exists('Data/npy_train_data/'):
os.makedirs('Data/npy_train_data/')
np.save('Data/npy_train_data/X.npy', X)
np.save('Data/npy_train_data/Y.npy', Y)
X, X_test, Y, Y_test = train_test_split(X, Y, test_size=0.1, random_state=42)
return X, X_test, Y, Y_test
评论列表
文章目录