def crate_pre_train_model(x_,y_):
(x_train,x_test) = train_test_split(x_,test_size=0.1,random_state=1)
(y_train,y_test) = train_test_split(y_,test_size=0.1,random_state=1)
dtrain = xgb.DMatrix( x_train, label=y_train)
dtest = xgb.DMatrix( x_test, label=y_test)
evallist = [(dtrain,'train'),(dtest,'eval')]
param = {'objective':'reg:linear','max_depth':3 }
param['nthread'] = 64
#param['min_child_weight'] = 15
#param['subsample'] = 1
#param['num_class'] = 7
plst = param.items()
num_round = 5000
bst = xgb.train( plst, dtrain, num_round,
evallist,early_stopping_rounds=100,
#obj=logregobj,
feval=evalerror
)
return bst
# %% main
评论列表
文章目录