def test_calibrate_final_model_classification():
np.random.seed(0)
df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset()
# Take a third of our test data (a tenth of our overall data) for calibration
df_titanic_test, df_titanic_calibration = train_test_split(df_titanic_test, test_size=0.33, random_state=42)
column_descriptions = {
'survived': 'output'
, 'embarked': 'categorical'
, 'pclass': 'categorical'
}
ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions)
ml_predictor.train(df_titanic_train, calibrate_final_model=True, X_test=df_titanic_calibration, y_test=df_titanic_calibration.survived)
test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived)
print('test_score')
print(test_score)
assert -0.215 < test_score < -0.17
评论列表
文章目录