train.py 文件源码

python
阅读 24 收藏 0 点赞 0 评论 0

项目:DeepLearning-OCR 作者: xingjian-f 项目源码 文件源码
def main():
    # img_width, img_height = 48, 48
    img_width, img_height = 200, 60
    img_channels = 1 
    # batch_size = 1024
    batch_size = 32
    nb_epoch = 1000
    post_correction = False

    save_dir = 'save_model/' + str(datetime.now()).split('.')[0].split()[0] + '/' # model is saved corresponding to the datetime
    train_data_dir = 'train_data/ip_train/'
    # train_data_dir = 'train_data/single_1000000/'
    val_data_dir = 'train_data/ip_val/'
    test_data_dir = 'test_data//'
    weights_file_path = 'save_model/2016-10-27/weights.11-1.58.hdf5'
    char_set, char2idx = get_char_set(train_data_dir)
    nb_classes = len(char_set)
    max_nb_char = get_maxnb_char(train_data_dir)
    label_set = get_label_set(train_data_dir)
    # val 'char_set:', char_set
    print 'nb_classes:', nb_classes
    print 'max_nb_char:', max_nb_char
    print 'size_label_set:', len(label_set)
    model = build_shallow(img_channels, img_width, img_height, max_nb_char, nb_classes) # build CNN architecture
    # model.load_weights(weights_file_path) # load trained model

    val_data = load_data(val_data_dir, max_nb_char, img_width, img_height, img_channels, char_set, char2idx)
    # val_data = None 
    train_data = load_data(train_data_dir, max_nb_char, img_width, img_height, img_channels, char_set, char2idx) 
    train(model, batch_size, nb_epoch, save_dir, train_data, val_data, char_set)

    # train_data = load_data(train_data_dir, max_nb_char, img_width, img_height, img_channels, char_set, char2idx)
    # test(model, train_data, char_set, label_set, post_correction)
    # val_data = load_data(val_data_dir, max_nb_char, img_width, img_height, img_channels, char_set, char2idx)
    # test(model, val_data, char_set, label_set, post_correction)
    # test_data = load_data(test_data_dir, max_nb_char, img_width, img_height, img_channels, char_set, char2idx)
    # test(model, test_data, char_set, label_set, post_correction)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号