def main():
stock_name = 'SPY'
delta = 4
start = datetime.datetime(2010,1,1)
end = datetime.datetime(2015,12,31)
start_test = datetime.datetime(2015,1,1)
dataset = util.get_data(stock_name, start, end)
delta = range(1, delta)
dataset = util.applyFeatures(dataset, delta)
dataset = util.preprocessData(dataset)
X_train, y_train, X_test, y_test = \
classifier.prepareDataForClassification(dataset, start_test)
X_train = numpy.reshape(numpy.array(X_train), (X_train.shape[0], 1, X_train.shape[1]))
X_test = numpy.reshape(numpy.array(X_test), (X_test.shape[0], 1, X_test.shape[1]))
#Step 2 Build Model
model = Sequential()
model.add(LSTM(
128,
input_shape=(None, X_train.shape[2]),
return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(
240,
return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(
units=1))
model.add(Activation('sigmoid'))
start = time.time()
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
#Step 3 Train the model
model.fit(
X_train,
y_train,
batch_size=4,
epochs=4,
validation_split=0.1)
print model.predict(X_train)
print model.evaluate(X_train, y_train)
评论列表
文章目录