def demo_movie_reviews(trainer, n_instances=None, output=None):
"""
Train classifier on all instances of the Movie Reviews dataset.
The corpus has been preprocessed using the default sentence tokenizer and
WordPunctTokenizer.
Features are composed of:
- most frequent unigrams
:param trainer: `train` method of a classifier.
:param n_instances: the number of total reviews that have to be used for
training and testing. Reviews will be equally split between positive and
negative.
:param output: the output file where results have to be reported.
"""
from nltk.corpus import movie_reviews
from nltk.sentiment import SentimentAnalyzer
if n_instances is not None:
n_instances = int(n_instances/2)
pos_docs = [(list(movie_reviews.words(pos_id)), 'pos') for pos_id in movie_reviews.fileids('pos')[:n_instances]]
neg_docs = [(list(movie_reviews.words(neg_id)), 'neg') for neg_id in movie_reviews.fileids('neg')[:n_instances]]
# We separately split positive and negative instances to keep a balanced
# uniform class distribution in both train and test sets.
train_pos_docs, test_pos_docs = split_train_test(pos_docs)
train_neg_docs, test_neg_docs = split_train_test(neg_docs)
training_docs = train_pos_docs+train_neg_docs
testing_docs = test_pos_docs+test_neg_docs
sentim_analyzer = SentimentAnalyzer()
all_words = sentim_analyzer.all_words(training_docs)
# Add simple unigram word features
unigram_feats = sentim_analyzer.unigram_word_feats(all_words, min_freq=4)
sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)
# Apply features to obtain a feature-value representation of our datasets
training_set = sentim_analyzer.apply_features(training_docs)
test_set = sentim_analyzer.apply_features(testing_docs)
classifier = sentim_analyzer.train(trainer, training_set)
try:
classifier.show_most_informative_features()
except AttributeError:
print('Your classifier does not provide a show_most_informative_features() method.')
results = sentim_analyzer.evaluate(test_set)
if output:
extr = [f.__name__ for f in sentim_analyzer.feat_extractors]
output_markdown(output, Dataset='Movie_reviews', Classifier=type(classifier).__name__,
Tokenizer='WordPunctTokenizer', Feats=extr, Results=results,
Instances=n_instances)
评论列表
文章目录