def gen_training_features(self, bodies_fpath, stances_fpath):
print 'Generating training features'
self._train_bodies, self._train_stances = self._read(bodies_fpath, stances_fpath, True)
print 'Generating ngrams'
ng_start = time.time()
self._train_unigrams = self._gen_ngrams(1, self._train_bodies, self._train_stances)
ng_end = time.time()
print 'ngrams generation time: ', (ng_end - ng_start), 'seconds'
print 'Generating jaccard similarities'
js_start = time.time()
self.train_avg_sims, self.train_max_sims = self._gen_jaccard_sims(
self._train_bodies,
self._train_stances
)
js_end = time.time()
print 'jaccard similarity generation time: ', (js_end - js_start), 'seconds'
for i in range(len(self._train_stances)):
labeled_feature = ({
'unigrams':self._train_unigrams[i],
'avg_sims':self.train_avg_sims[i],
'max_sims':self.train_max_sims[i]},
self._train_stances[i]['Stance'])
self._labeled_feature_set.append(labeled_feature)
stance_detection.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录