def Markov_generate_unigram(seed):
seed = ''.join(seed)
counter = 1
next_word_list = []
for i in data:
if seed == i:
next_word_list.append(data[counter])
counter += 1
if len(next_word_list) == 0:
return nltk.bigrams(["you", "are"])
cfdist = nltk.FreqDist(next_word_list)
next_word = cfdist.max()
return nltk.bigrams([seed, next_word])
converse.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录