def ne_chunked():
print()
print("1500 Sentences from Penn Treebank, as processed by NLTK NE Chunker")
print("=" * 45)
ROLE = re.compile(r'.*(chairman|president|trader|scientist|economist|analyst|partner).*')
rels = []
for i, sent in enumerate(nltk.corpus.treebank.tagged_sents()[:1500]):
sent = nltk.ne_chunk(sent)
rels = extract_rels('PER', 'ORG', sent, corpus='ace', pattern=ROLE, window=7)
for rel in rels:
print('{0:<5}{1}'.format(i, rtuple(rel)))
relextract.py 文件源码
python
阅读 19
收藏 0
点赞 0
评论 0
评论列表
文章目录