def vectorize(data, word2idx, story_maxlen, question_maxlen):
Xs, Xq, Y = [], [], []
stories, questions, answers = data
for story, question, answer in zip(stories, questions, answers):
xs = [[word2idx[w.lower()] for w in nltk.word_tokenize(s)]
for s in story]
xs = list(itertools.chain.from_iterable(xs))
xq = [word2idx[w.lower()] for w in nltk.word_tokenize(question)]
Xs.append(xs)
Xq.append(xq)
Y.append(word2idx[answer.lower()])
return pad_sequences(Xs, maxlen=story_maxlen),\
pad_sequences(Xq, maxlen=question_maxlen),\
np_utils.to_categorical(Y, num_classes=len(word2idx))
mem-network.py 文件源码
python
阅读 26
收藏 0
点赞 0
评论 0
评论列表
文章目录