def createTrainingList(reviewLst):
sds = SupervisedDataSet(100,1)
for review in reviewLst:
revString = unicode(review[1], errors='ignore')
revSentences = nltk.word_tokenize(revString.strip())
revWords = []
for i in revSentences:
revWords += i.lower().split()
vec = 0
for i in revWords:
try:
vec+=model[i]/2
except:
pass
vec=vec/len(revWords)
sds.addSample(vec,review[0])
net = buildNetwork(100, 20, 1, hiddenclass=TanhLayer, outclass=SoftmaxLayer,bias=True)
trainer = BackpropTrainer(net, sds)
print "Error score:",trainer.train()
print trainer.trainUntilConvergence(verbose=True,maxEpochs=100)
评论列表
文章目录