def test_file():
count = 1
face_cascade = cv2.CascadeClassifier(
'/usr/local/opt/opencv3/share/OpenCV/haarcascades/haarcascade_frontalface_default.xml')
argvs = sys.argv
for argv in argvs[1:]:
img = cv2.imread(argv)
if type(img) != str:
try:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
print('convert succeed')
except:
print('can not convert to gray image')
continue
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
f = cv2.resize(gray[y:(y + h), x:(x + w)], (128, 128))
model = load_model('/Users/songheqi/model/model.h5')
num, acc = predict(model, f, 128)
name_list = read_name_list('/Users/songheqi/train_set/')
print('The {} picture is '.format(count) +
name_list[num] + ' acc : ', acc)
count += 1
评论列表
文章目录