def evaluate(run_dir):
with tf.Session() as sess:
input_file = os.path.join(FLAGS.train_dir, 'md.json')
print(input_file)
with open(input_file, 'r') as f:
md = json.load(f)
num_eval = md['%s_counts' % FLAGS.eval_data]
images, labels, _ = inputs(FLAGS.train_dir, FLAGS.batch_size, FLAGS.image_size, mode='test',
num_preprocess_threads=FLAGS.num_preprocess_threads)
logits = inference(images, md['nlabels'], 1, reuse=False)
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(run_dir, sess.graph)
saver = tf.train.Saver()
eval_once(sess, saver, summary_writer, summary_op, logits, labels, num_eval)
评论列表
文章目录