def train_cnn1(x_train, y_train, x_test, y_test, num_classes, input_shape):
nb_filters = 32
pool_size = (2, 2)
kernel_size = (3, 3)
model = Sequential()
# model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape=(64, 64, 1)))
# model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
# border_mode='valid'))
#
# model.add(Activation('relu'))
# model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
# model.add(Activation('relu'))
# model.add(MaxPooling2D(pool_size=pool_size))
# model.add(Dropout(0.25))
#
# model.add(Flatten())
# model.add(Dense(64))
# model.add(Activation('relu'))
# model.add(Dropout(0.5))
# model.add(Dense(num_classes))
# model.add(Activation('softmax'))
model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# model.add(Dropout(0.25))
model.add(Convolution2D(32, 3, 3, border_mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# model.add(Dropout(0.25))
model.add(Flatten())
model.add((Dense(512)))
model.add(Activation('relu'))
# model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
# model.summary()
model.compile(loss='categorical_crossentropy', optimizer=Adamax(lr=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=1e-4), metrics=["accuracy"])
model.fit(x_train, y_train,
batch_size=24, nb_epoch=32, verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=1)
return score[1]
localization_cnn.py 文件源码
python
阅读 19
收藏 0
点赞 0
评论 0
评论列表
文章目录