def keras_mlp1(train2, y, test2, v, z):
cname = sys._getframe().f_code.co_name
def build_model(input_dims):
from keras import layers
from keras import models
from keras import optimizers
input_ = layers.Input(shape=(input_dims,))
model = layers.Dense(1024, kernel_initializer='Orthogonal')(input_)
model = layers.BatchNormalization()(model)
model = layers.advanced_activations.PReLU()(model)
#model = layers.Dropout(0.7)(model)
model = layers.Dense(256, kernel_initializer='Orthogonal')(model)
model = layers.BatchNormalization()(model)
model = layers.advanced_activations.PReLU()(model)
#model = layers.Dropout(0.9)(model)
model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
model = layers.BatchNormalization()(model)
model = layers.advanced_activations.PReLU()(model)
model = layers.Dense(1, activation='sigmoid')(model)
model = models.Model(input_, model)
model.compile(loss = 'binary_crossentropy',
optimizer = optimizers.Nadam(),
#optimizer = optimizers.SGD(),
metrics = ['binary_accuracy'])
#print(model.summary(line_length=120))
return model
keras_base(train2, y, test2, v, z, build_model, 9, cname, base_seed=42)
#@tf_force_cpu
评论列表
文章目录