def build_keras_model(self):
''' #example:
from keras import layers
from keras import models
from keras import optimizers
input_ = layers.Input(shape=(self.input_dims_,))
model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
#model = layers.BatchNormalization()(model)
model = layers.Activation('selu')(model)
#model = layers.noise.AlphaDropout(0.2, seed=1)(model)
#model = layers.advanced_activations.PReLU()(model)
#model = layers.Dropout(0.4)(model)
model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
#model = layers.BatchNormalization()(model)
model = layers.Activation('selu')(model)
#model = layers.noise.AlphaDropout(0.1, seed=1)(model)
#model = layers.advanced_activations.PReLU()(model)
#model = layers.Dropout(0.4)(model)
model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
#model = layers.BatchNormalization()(model)
model = layers.Activation('selu')(model)
#model = layers.advanced_activations.PReLU()(model)
model = layers.Dense(1, activation='sigmoid')(model)
model = models.Model(input_, model)
model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
#print(model.summary(line_length=120))
return model
'''
raise Exception('implement this!')
#@tf_force_cpu
评论列表
文章目录