def MLP(opt='nadam'):
X_raw=Input(shape=(LEN_RAW_INPUT,),name='input_raw')
fc1=BatchNormalization()(X_raw)
fc1=Dense(256)(fc1)
fc1=PReLU()(fc1)
fc1=Dropout(0.2)(fc1)
fc1=BatchNormalization()(fc1)
fc1=Dense(256)(fc1)
fc1=PReLU()(fc1)
#fc1=Dropout(0.2)(fc1)
fc1=BatchNormalization()(fc1)
auxiliary_output_dense = Dense(1, activation='sigmoid', name='aux_output_dense')(fc1)
output_all = Dense(1,activation='sigmoid',name='output')(fc1)
model=Model(input=X_raw,output=output_all)
model.compile(
optimizer=opt,
loss = 'binary_crossentropy')
return model
#nadam=Nadam(lr=0.000)
stack_mlp_level2.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录