def create_model_RES():
inp = Input((110, 110, 3))
cnv1 = Conv2D(64, 3, 3, subsample=[2,2], activation='relu', border_mode='same')(inp)
r1 = Residual(64, 64, cnv1)
# An example residual unit coming after a convolutional layer. NOTE: the above residual takes the 64 output channels
# from the Convolutional2D layer as the first argument to the Residual function
r2 = Residual(64, 64, r1)
cnv2 = Conv2D(64, 3, 3, activation='relu', border_mode='same')(r2)
r3 = Residual(64, 64, cnv2)
r4 = Residual(64, 64, r3)
cnv3 = Conv2D(128, 3, 3, activation='relu', border_mode='same')(r4)
r5 = Residual(128, 128, cnv3)
r6 = Residual(128, 128, r5)
maxpool = MaxPooling2D(pool_size=(7, 7))(r6)
flatten = Flatten()(maxpool)
dense1 = Dense(128, activation='relu')(flatten)
out = Dense(2, activation='softmax')(dense1)
model = Model(input=inp, output=out)
model.compile(loss='categorical_crossentropy',
optimizer=Nadam(lr=1e-4), metrics=['accuracy'])
return model
model.py 文件源码
python
阅读 24
收藏 0
点赞 0
评论 0
评论列表
文章目录