def my_model(dropout):
############ model params ################
line_length = 248 # seq size
train_char = 58
hidden_neurons = 512 # hidden neurons
batch = 64 # batch_size
no_epochs = 5
################### Model ################
model = Sequential()
# layer 1
model.add(LSTM(hidden_neurons, return_sequences=True,
input_shape=(line_length, train_char)))
model.add(Dropout(dropout))
# layer 2
model.add(LSTM(hidden_neurons, return_sequences=True))
model.add(Dropout(dropout))
# layer 3
model.add(LSTM(hidden_neurons, return_sequences=True))
model.add(Dropout(dropout))
model.add(Reshape((248, 512)))
# fc layer
model.add(TimeDistributed(Dense(58, activation='softmax')))
# model.load_weights("weights/model_maha1_noep50_batch64_seq_248.hdf5")
# model.layers.pop()
# model.layers.pop()
# model.add(Dropout(dropout))
#model.add(TimeDistributed(Dense(train_char, activation='softmax')))
initlr = 0.00114
adagrad = Adagrad(lr=initlr, epsilon=1e-08)
model.compile(optimizer=adagrad,
loss='categorical_crossentropy', metrics=['accuracy'])
###load weights####
return model
评论列表
文章目录