def model_generate():
img_rows, img_cols = 48, 48
model = Sequential()
model.add(Convolution2D(64, 5, 5, border_mode='valid',
input_shape=(1, img_rows, img_cols)))
model.add(keras.layers.advanced_activations.PReLU(init='zero', weights=None))
model.add(keras.layers.convolutional.ZeroPadding2D(padding=(2, 2), dim_ordering='th'))
model.add(MaxPooling2D(pool_size=(5, 5),strides=(2, 2)))
model.add(keras.layers.convolutional.ZeroPadding2D(padding=(1, 1), dim_ordering='th'))
model.add(Convolution2D(64, 3, 3))
model.add(keras.layers.advanced_activations.PReLU(init='zero', weights=None))
model.add(keras.layers.convolutional.ZeroPadding2D(padding=(1, 1), dim_ordering='th'))
model.add(Convolution2D(64, 3, 3))
model.add(keras.layers.advanced_activations.PReLU(init='zero', weights=None))
model.add(keras.layers.convolutional.AveragePooling2D(pool_size=(3, 3),strides=(2, 2)))
model.add(keras.layers.convolutional.ZeroPadding2D(padding=(1, 1), dim_ordering='th'))
model.add(Convolution2D(128, 3, 3))
model.add(keras.layers.advanced_activations.PReLU(init='zero', weights=None))
model.add(keras.layers.convolutional.ZeroPadding2D(padding=(1, 1), dim_ordering='th'))
model.add(Convolution2D(128, 3, 3))
model.add(keras.layers.advanced_activations.PReLU(init='zero', weights=None))
model.add(keras.layers.convolutional.ZeroPadding2D(padding=(1, 1), dim_ordering='th'))
model.add(keras.layers.convolutional.AveragePooling2D(pool_size=(3, 3),strides=(2, 2)))
model.add(Flatten())
model.add(Dense(1024))
model.add(keras.layers.advanced_activations.PReLU(init='zero', weights=None))
model.add(Dropout(0.2))
model.add(Dense(1024))
model.add(keras.layers.advanced_activations.PReLU(init='zero', weights=None))
model.add(Dropout(0.2))
model.add(Dense(7))
model.add(Activation('softmax'))
ada = Adadelta(lr=0.1, rho=0.95, epsilon=1e-08)
model.compile(loss='categorical_crossentropy',
optimizer=ada,
metrics=['accuracy'])
model.summary()
return model
averagemethod.py 文件源码
python
阅读 15
收藏 0
点赞 0
评论 0
评论列表
文章目录