models.py 文件源码

python
阅读 21 收藏 0 点赞 0 评论 0

项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码
def cnn2(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    model = Sequential(name='MP_small_filters')
    model.add(Conv1D (kernel_size = (10), filters = 64, strides=2, input_shape=input_shape, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())

    model.add(Conv1D (kernel_size = (10), filters = 64, strides=2, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())

    model.add(Conv1D (kernel_size = (10), filters = 128, strides=2, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())

    model.add(Flatten())
    model.add(Dense (500, activation='elu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense (500, activation='elu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense(n_classes, activation = 'softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adadelta())
    return model
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号