def main():
from keras.optimizers import Adam, RMSprop, SGD
from metric import dice_coef, dice_coef_loss
import numpy as np
img_rows = IMG_ROWS
img_cols = IMG_COLS
optimizer = RMSprop(lr=0.045, rho=0.9, epsilon=1.0)
model = get_unet(Adam(lr=1e-5))
model.compile(optimizer=optimizer, loss=dice_coef_loss, metrics=[dice_coef])
x = np.random.random((1, 1,img_rows,img_cols))
res = model.predict(x, 1)
print res
#print 'res', res[0].shape
print 'params', model.count_params()
print 'layer num', len(model.layers)
#
u_model.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录