def createModel(self, inputs, outputs, hiddenLayers, activationType):
model = Sequential()
if len(hiddenLayers) == 0:
model.add(Dense(self.output_size, input_shape=(self.input_size,), init='lecun_uniform'))
model.add(Activation("linear"))
else :
model.add(Dense(hiddenLayers[0], input_shape=(self.input_size,), init='lecun_uniform'))
if (activationType == "LeakyReLU") :
model.add(LeakyReLU(alpha=0.01))
else :
model.add(Activation(activationType))
for index in range(1, len(hiddenLayers)-1):
layerSize = hiddenLayers[index]
model.add(Dense(layerSize, init='lecun_uniform'))
if (activationType == "LeakyReLU") :
model.add(LeakyReLU(alpha=0.01))
else :
model.add(Activation(activationType))
model.add(Dense(self.output_size, init='lecun_uniform'))
model.add(Activation("linear"))
optimizer = optimizers.RMSprop(lr=1, rho=0.9, epsilon=1e-06)
model.compile(loss="mse", optimizer=optimizer)
return model
评论列表
文章目录