def get_dense_model():
"""Make keras model"""
learning_rate=1e-4
inp = Input(shape=(80*80,))
h = Dense(200, activation='relu')(inp)
out = Dense(1, activation='sigmoid')(h)
model = Model(inp, out)
optim = RMSprop(learning_rate)
model.compile(optim, 'binary_crossentropy')
try:
model.load_weights('mod_weights_binary.h5')
print('weights loaded')
except:
pass
return model
erlenda_pong_parallel.py 文件源码
python
阅读 19
收藏 0
点赞 0
评论 0
评论列表
文章目录