def ann_rnn(input_shape, n_classes):
"""
for working with extracted features
"""
model = Sequential(name='ann_rnn')
model.add(TimeDistributed(Dense (80, activation='elu', kernel_initializer='he_normal'), input_shape=input_shape))
model.add(BatchNormalization())
model.add(Dropout(0.35))
model.add(TimeDistributed(Dense (80, activation='elu', kernel_initializer='he_normal')))
model.add(BatchNormalization())
model.add(Dropout(0.35))
model.add(LSTM(50))
model.add(Dense(n_classes, activation = 'softmax'))
model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=[keras.metrics.categorical_accuracy])
return model
评论列表
文章目录