def run_experiment(self, input_shape, labels, comb):
# comb holds values like (32, (2,2), optimizers-Adam()). We need to use self.keys_mapper
# which maps a name ("units", "kernel_sizes", "optimizers") to the position where it is
# in comb. I wonder if it would be more comprehensible with a function like
# get_element_from_comb(self, comb, key) { return comb[self.keys_mapper[key]] }
opt = comb[self.keys_mapper["optimizers1"]]
loss = comb[self.keys_mapper["losses1"]]
f1 = comb[self.keys_mapper["filters1"]]
f2 = comb[self.keys_mapper["filters2"]]
u1 = comb[self.keys_mapper["units1"]]
ks = comb[self.keys_mapper["kernel_sizes1"]]
ps = comb[self.keys_mapper["pool_sizes1"]]
d1 = comb[self.keys_mapper["dropouts1"]]
d2 = comb[self.keys_mapper["dropouts2"]]
return (opt, loss,
Conv2D(f1, kernel_size=ks, activation='relu', input_shape=input_shape),
Conv2D(f2, kernel_size=ks, activation='relu'),
MaxPooling2D(pool_size=ps),
Dropout(d1),
Flatten(),
Dense(u1, activation='relu'),
Dropout(d2),
Dense(len(labels), activation='softmax'))
modular_neural_network.py 文件源码
python
阅读 33
收藏 0
点赞 0
评论 0
评论列表
文章目录