def create_base_model(nb_features, nb_classes, learning_rate=0.02):
model = Sequential()
# input layer + first hidden layer
model.add(Dense(512, kernel_initializer='lecun_uniform', input_shape=(nb_features,)))
model.add(PReLU())
model.add(Dropout(0.5))
# additional hidden layer
model.add(Dense(512, kernel_initializer='lecun_uniform'))
model.add(PReLU())
model.add(Dropout(0.75))
# output layer
model.add(Dense(nb_classes, kernel_initializer='lecun_uniform'))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=Adam(lr=learning_rate), metrics=['accuracy'])
return model
评论列表
文章目录