def VGG_16_KERAS(classes_number, optim_name='Adam', learning_rate=-1):
from keras.layers.core import Dense, Dropout, Flatten
from keras.applications.vgg16 import VGG16
from keras.models import Model
base_model = VGG16(include_top=True, weights='imagenet')
x = base_model.layers[-2].output
del base_model.layers[-1:]
x = Dense(classes_number, activation='softmax', name='predictions')(x)
vgg16 = Model(input=base_model.input, output=x)
optim = get_optim('VGG16_KERAS', optim_name, learning_rate)
vgg16.compile(optimizer=optim, loss='categorical_crossentropy', metrics=['accuracy'])
# print(vgg16.summary())
return vgg16
# MIN: 1.00 Fast: 60 sec
评论列表
文章目录