def baseline_model():
# create model
input_shape = (1, 50, 50)
model = Sequential()
model.add(Conv2D(16, (3, 3),
activation='sigmoid',
strides=(1, 1),
data_format='channels_first',
padding='same',
input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2), data_format='channels_first'))
model.add(Conv2D(48, kernel_size=(3, 3),
activation='sigmoid',
strides=(1, 1),
data_format="channels_first",
padding="same",
input_shape=input_shape))
model.add(Conv2D(64, kernel_size=(3, 3),
activation='sigmoid',
strides=(1, 1),
data_format="channels_first",
padding="same",
input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2), data_format='channels_first'))
model.add(Conv2D(64, kernel_size=(3, 3),
activation='sigmoid',
strides=(1, 1),
data_format="channels_first",
padding="same",
input_shape=input_shape))
model.add(Flatten())
model.add(Dense(64, activation='sigmoid'))
model.add(Dense(68*2, activation='tanh'))
# Compile model
sgd = SGD(lr=1e-4, momentum=0.9, decay=1e-6, nesterov=False)
model.compile(loss='mean_squared_error', optimizer=sgd)
return model
评论列表
文章目录