def make_wave(maxlen):
model = Sequential()
# conv1
model.add(Dense(64,input_dim=maxlen, kernel_initializer='he_normal',bias_initializer='zeros' ) )
model.add(PRELU())
model.add(Dropout(0.25))
model.add(Dense(32))
model.add(PRELU())
model.add(Dense(8))
model.add(PRELU())
model.add(Dense(1))
model.add(Activation('sigmoid'))
SGDsolver = SGD(lr=0.1, momentum=0.25, decay=0.0001, nesterov=True)
model.compile(loss='binary_crossentropy',
optimizer=SGDsolver,
metrics=['accuracy'])
return model
model_fit_history.py 文件源码
python
阅读 19
收藏 0
点赞 0
评论 0
评论列表
文章目录