def generate(SONG_LENGTH, nb):
generator = generator_model()
generator.compile(loss='binary_crossentropy', optimizer="SGD")
generator.load_weights('generator')
print "loading_latent_music"
latent_music = trainLoadMusic.loadMusic("lstm_outputs", SONG_LENGTH)
for i in range(nb):
latent = random.choice(latent_music)
song = generator.predict(latent, verbose=1)
song = song.reshape((SONG_LENGTH,note_span_with_ligatures/2,2))
song_0 = generate_from_probabilities(song_0)
matrixToMidi(song_0,'outputs/example {}'.format(i))
rnn-cnn-gan-enhancer.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录