def train(self, model, saveto_path=''):
x_train, y_train = get_data(self.train_data_path, "train", "frame", self.feature_type)
print('%d training frame level samples.' % len(x_train))
x_valid, y_valid = get_data(self.valid_data_path, "valid", "frame", self.feature_type)
print('%d validation frame level samples.' % len(x_valid))
sgd = SGD(lr=0.01,
decay=1e-6,
momentum=0.9,
nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
callbacks = list()
callbacks.append(CSVLogger(LOG_FILE))
callbacks.append(ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=2, min_lr=0.0001))
if saveto_path:
callbacks.append(ModelCheckpoint(filepath=MODEL_WEIGHTS, verbose=1))
model.fit(x_train,
y_train,
epochs=5,
callbacks=callbacks,
validation_data=(x_valid, y_valid))
# Save the weights on completion.
if saveto_path:
model.save_weights(saveto_path)
load_deepmodels.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录