def LogisticRegression(result):
# dd = pd.DataFrame(Variance)
dd = result
# dd['flag'] = df_flag
from random import shuffle
data = dd.as_matrix()
shuffle(data)
p = 0.8 # train/test ratio
m,n = np.shape(data)
train = data[:int(m*p),:]
test = data[int(m*p):,:]
data = result
df_flag = result.pop('df')
from sklearn.linear_model import LogisticRegression as LR
from sklearn.linear_model import RandomizedLogisticRegression as RLR
x = result.values
y = df_flag.values
rlr = RLR() #?????????????
rlr.fit(x, y) #????
rlr.get_support() #??????????????
print(u'??????????????')
print(u'??????%s' % ','.join(data.columns[rlr.get_support()]))
x = data[data.columns[rlr.get_support()]].as_matrix() #
lr = LR() # ????????
lr.fit(x, y) # ??????????????
print(u'????')
print(u'???????%s' % lr.score(x, y))
评论列表
文章目录