def greedy_select_features(self):
saved = None if self.debug_ else self.load('chosen_features')
if saved == None:
print('initial shapes:', self.train_.shape, self.test_.shape)
num_columns = self.train_.shape[1]
col_names = [str(c) for c in range(num_columns)]
self.train_.columns = col_names
self.test_.columns = col_names
g_best_score = 1e9
g_best_features = None
y = self.y_.ravel()
current = set()
scorer = metrics.make_scorer(metrics.log_loss)
for _ in enumerate(col_names):
avail = set(col_names).difference(current)
best_score = 1e9
best_features = None
for f in avail:
newf = list(current | {f})
cv = model_selection.cross_val_score(linear_model.BayesianRidge(),
self.train_[newf], y,
cv=self.n_fold_, n_jobs=-2,
scoring = scorer)
score = np.mean(cv)
if best_score > score:
best_score = score
best_features = newf
current = set(best_features)
if g_best_score > best_score:
g_best_score = best_score
g_best_features = best_features
print('new best:', g_best_score, g_best_features, self.now())
if len(best_features) - len(g_best_features) > 15:
break
self.save('chosen_features', (g_best_features, None))
else:
g_best_features, _ = saved
print('feature selection complete.', self.now())
self.train_ = self.train_[g_best_features]
self.test_ = self.test_[g_best_features]
评论列表
文章目录