def test_ElasticNet_alpha_rho(*data):
'''
test score with different alpha and l1_ratio
:param data: train_data, test_data, train_value, test_value
:return: None
'''
X_train,X_test,y_train,y_test=data
alphas=np.logspace(-2,2)
rhos=np.linspace(0.01,1)
scores=[]
for alpha in alphas:
for rho in rhos:
regr = linear_model.ElasticNet(alpha=alpha,l1_ratio=rho)
regr.fit(X_train, y_train)
scores.append(regr.score(X_test, y_test))
## graph
alphas, rhos = np.meshgrid(alphas, rhos)
scores=np.array(scores).reshape(alphas.shape)
from mpl_toolkits.mplot3d import Axes3D # this part works well in py3
from matplotlib import cm
fig=plt.figure()
ax=Axes3D(fig)
surf = ax.plot_surface(alphas, rhos, scores, rstride=1, cstride=1, cmap=cm.jet,
linewidth=0, antialiased=False)
fig.colorbar(surf, shrink=0.5, aspect=5)
ax.set_xlabel(r"$\alpha$")
ax.set_ylabel(r"$\rho$")
ax.set_zlabel("score")
ax.set_title("ElasticNet")
plt.show()
评论列表
文章目录