def test_Lasso(*data):
'''
test the correlation between alpha and sparse condition
:param data: train_data, test_data, train_value, test_value
:return: None
'''
X,y=data
alphas=np.logspace(-2,2)
zeros=[]
for alpha in alphas:
regr=Lasso(alpha=alpha)
regr.fit(X,y)
num=0
for ele in regr.coef_:
if abs(ele) < 1e-5:num+=1
zeros.append(num)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(alphas,zeros)
ax.set_xlabel(r"$\alpha$")
ax.set_xscale("log")
ax.set_ylim(0,X.shape[1]+1)
ax.set_ylabel("zeros in coef")
ax.set_title("Sparsity In Lasso")
plt.show()
11.7 feature_selection_embeded.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录