def pd_gscv( pdr, method, xM, yV, alphas_log, colname = 'Predicted-RP', fname = 'sheet/rafa36795_cxcalc_prp1000.csv'):
"""
This run grid search, perform cross-validation for plotting and save the predicted values,
"""
print("1. Searching the best hyper-parameter by a grid method.")
gr = jgrid.gs( method, xM, yV, alphas_log)
print(gr.grid_scores_)
print("Best alpha:", gr.best_params_['alpha'])
print("2. Predicting the property using the best hyper-parameter and show a x-y plot")
yV_pred = jgrid.cv( 'Lasso', xM, yV, alpha = gr.best_params_['alpha'], grid_std = gr_beststd(gr))
print("3. Saving the predicted results in crossvalidation into", fname)
pdw = pdr.copy()
pdw[ colname] = yV_pred.tolist()
pdw.to_csv( fname, index = False)
print("4. Saving the best estimator as a pkl file")
print(gr.best_estimator_)
externals.joblib.dump(gr.best_estimator_, fname[:-3] + "pkl")
评论列表
文章目录