def ridge_regression(data, a):
features = data.columns.tolist()
features.remove('label')
response = ['label']
# ????Ridge Regression model
lr = Ridge(alpha=a)
# ?????: label(????DataFrame)
y = data[response]
# ??features (????DataFrame)
X = data[features]
# _leave_one_out(lr, X.values, y.values)
# fit regression model to the data
model = lr.fit(X, y)
# ?????model?????
predicted_y = model.predict(X) # predicted_y?????numpy array
# ???y?DataFrame?????numpy array???????
y = np.array(y)
# ?????
_print_y_and_predicted_y_and_corr(y, predicted_y)
_print_r2_score(y, predicted_y)
_print_coefficients(model, features, '~/Desktop/??_???_lt30.csv')
_print_MSE(y, predicted_y)
plot_true_and_pred_scatter(y, predicted_y)
# std_error(y, predicted_y)
评论列表
文章目录