transact.py 文件源码

python
阅读 21 收藏 0 点赞 0 评论 0

项目:banking-class 作者: eli-goodfriend 项目源码 文件源码
def run_cat(filename,modelname,fileout,embeddings,new_run=True,run_parse=True,
            model_type='logreg',C=10.0,
            alpha=1.0, cutoff=0.50, n_iter=1):
    # pull relevant data and run parsing and classification
    df = pd.read_csv(filename) 
    if (len(df.columns)==2): # make sure columns have the right names
        df.columns = ['raw','amount']

    if new_run: # initialize the model;
        if model_type=='logreg':
            model = linear_model.SGDClassifier(loss='log',warm_start=True,
                                           n_iter=n_iter,alpha=alpha)
        elif model_type=='passive-aggressive':
            model = linear_model.PassiveAggressiveClassifier(C=C,warm_start=True)
        elif model_type=='naive-bayes':
            model = naive_bayes.GaussianNB()
        else:
            raise NameError('model_type must be logreg, passive-aggressive, or naive-bayes')
    else: # load a saved, pre-trained model
        modelFileLoad = open(modelname, 'rb')
        model = pickle.load(modelFileLoad)

    fileCities = dirs.data_dir + 'cities_by_state.pickle'
    us_cities = pd.read_pickle(fileCities)

    df = cat_df(df,model,us_cities,embeddings,new_run,run_parse,cutoff=cutoff,
                model_type=model_type)

    df.to_csv(fileout,index=False)

    # Saving logistic regression model from training set 1
    modelFileSave = open(modelname, 'wb')
    pickle.dump(model, modelFileSave)
    modelFileSave.close()


# ------ testing functions
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号