def try_params( n_iterations, params ):
n_iterations = int( round( n_iterations ))
print "n_iterations:", n_iterations
pprint( params )
if params['scaler']:
scaler = eval( "{}()".format( params['scaler'] ))
x_train_ = scaler.fit_transform( data['x_train'].astype( float ))
x_test_ = scaler.transform( data['x_test'].astype( float ))
local_data = { 'x_train': x_train_, 'y_train': data['y_train'],
'x_test': x_test_, 'y_test': data['y_test'] }
else:
local_data = data
# we need a copy because at the next small round the best params will be re-used
params_ = dict( params )
params_.pop( 'scaler' )
clf = SGD( n_iter = n_iterations, **params_ )
return train_and_eval_sklearn_classifier( clf, local_data )
评论列表
文章目录