def linear_model_multivariate():
#coefficient = (X_trans*X)^-1 * X_trans * y
data = pd.read_csv('E://Spyder/LinearRegression/data/data.csv')
X_tem = []
Y_tem = []
linearModel={}
for X_data ,Y_data in zip(data['x'],data['y']):
X_tem.append(int(X_data))
Y_tem.append(float(Y_data))
X_parameters = np.ones((len(X_tem),2))
for i in range(len(X_tem)):
X_parameters[i][0] = X_tem[i]
Y_parameters = np.array(Y_tem)
# Formula
# coefficient = inv(X.T*X) * X.T * y
coefficient = np.dot(np.dot(np.linalg.inv(np.dot(X_parameters.T,X_parameters)),X_parameters.T),Y_parameters)
avg_X = X_parameters.mean(axis = 0)
intercept = Y_parameters.mean() + coefficient * avg_X[1]
linearModel['coefficient'] = coefficient
linearModel['intercept'] = intercept
return linearModel
linearRegresion.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录