def linear_model_manual(prediction_value):
data = pd.read_csv('E://Spyder/LinearRegression/data/data.csv')
X_tem = []
Y_tem = []
for X_data ,Y_data in zip(data['x'],data['y']):
X_tem.append(int(X_data))
Y_tem.append(float(Y_data))
X_parameters = np.array(X_tem)
Y_parameters = np.array(Y_tem)
xy = X_parameters*Y_parameters
xy_avg = xy.mean()
x_avg = X_parameters.mean()
y_avg = Y_parameters.mean()
x_square = X_parameters*X_parameters
x_square_avg = x_square.mean()
predictions = {}
#Method of least squares
predictions['coefficient'] = (xy_avg - x_avg*y_avg) / (x_square_avg - x_avg*x_avg)
predictions['intercept'] = y_avg - predictions['coefficient']*x_avg
#prediction_result
predictions['predictions_result'] = predictions['intercept'] + predictions['coefficient']*prediction_value
return predictions
linearRegresion.py 文件源码
python
阅读 29
收藏 0
点赞 0
评论 0
评论列表
文章目录