identify_singing_voice_gender.py 文件源码

python
阅读 23 收藏 0 点赞 0 评论 0

项目:ISM2017 作者: ybayle 项目源码 文件源码
def classify(train=None, test=None, data=None, res_dir="res/", disp=True, outfilename=None):
    """Description of compare
    compare multiple classifier and display the best one
    """
    utils.print_success("Comparison of differents classifiers")
    if data is not None:
        train_features = data["train_features"]
        train_groundtruths = data["train_groundtruths"]
        test_features = data["test_features"]
        test_groundtruths = data["test_groundtruths"]
    else:
        train = utils.abs_path_file(train)
        test = utils.abs_path_file(test)
        train_features, train_groundtruths = read_file(train)
        test_features, test_groundtruths = read_file(test)
    if not utils.create_dir(res_dir):
        res_dir = utils.abs_path_dir(res_dir)
    classifiers = {
        "RandomForest": RandomForestClassifier(n_jobs=-1)
        # "RandomForest": RandomForestClassifier(n_estimators=5),
        # "KNeighbors":KNeighborsClassifier(3),
        # "GaussianProcess":GaussianProcessClassifier(1.0 * RBF(1.0), warm_start=True),
        # "DecisionTree":DecisionTreeClassifier(max_depth=5),
        # "MLP":MLPClassifier(),
        # "AdaBoost":AdaBoostClassifier(),
        # "GaussianNB":GaussianNB(),
        # "QDA":QuadraticDiscriminantAnalysis(),
        # "SVM":SVC(kernel="linear", C=0.025),
        # "GradientBoosting":GradientBoostingClassifier(),
        # "ExtraTrees":ExtraTreesClassifier(),
        # "LogisticRegression":LogisticRegression(),
        # "LinearDiscriminantAnalysis":LinearDiscriminantAnalysis()
    }
    for key in classifiers:
        utils.print_success(key)
        clf = classifiers[key]
        utils.print_info("\tFit")
        clf.fit(train_features, train_groundtruths)
        utils.print_info("\tPredict")
        predictions = clf.predict(test_features)
    return predictions
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号