def task73(features):
features = numpy.array(features)
words = list(set(features[:, 1]))
pos_vec = numpy.zeros(len(words))
neg_vec = numpy.zeros(len(words))
for feature in features:
index = words.index(feature[1])
if feature[0] == '-1':
pos_vec[index] += 1
else:
neg_vec[index] += 1
model = linear_model.LogisticRegression()
model.fit([pos_vec, neg_vec], [1, -1])
return (words, model)
评论列表
文章目录