def build_models_DOC(train_pos_vec, train_neg_vec):
"""
Returns a GaussianNB and LosticRegression Model that are fit to the training data.
"""
Y = ["pos"]*len(train_pos_vec) + ["neg"]*len(train_neg_vec)
# Use sklearn's GaussianNB and LogisticRegression functions to fit two models to the training data.
# For LogisticRegression, pass no parameters
train_vec = []
train_vec.extend(train_pos_vec)
train_vec.extend(train_neg_vec)
nb_model = GaussianNB()
nb_model.fit(train_vec, Y)
lr_model = LogisticRegression()
lr_model.fit(train_vec, Y)
return nb_model, lr_model
sentiment.py 文件源码
python
阅读 26
收藏 0
点赞 0
评论 0
评论列表
文章目录